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ABSTRACT

These lectures describe the implementation of optimiza-

tion techniques based on control theory for airfoil and

wing design. In previous studies [10, 11] it was shown
that control theory could be used to devise an effective

optimization procedure for two-dimensional profiles in

which the shape is determined by a conformal transfor-

rnation from a unit circle, and the control is the mapping

function. Recently the method has been implemented in

an alternative formulation which does not depend on con-

formal mapping, so that it can more easily be extended

to treat general configurations [16]. The method has also

been extended to treat the Euler equations, and results

are presented for both two and three dimensional cases,

including the optimization of a swept wing.

1 FORMULATION OF THE DESIGN PROBLEM

AS A CONTROL PROBLEM

Ultimately, the designer seeks to optimize the geometric

shape of a configuration taking into account the trade-offs
between aerodynamic performance, structure weight, and

the requirement for internal volume to contain fuel and

payload. The subtlety and complexity of fluid flow is

such that it is unlikely that repeated trials in an interactive

analysis and design procedure can lead to a truly opti-
mum design. Progress toward automatic design has been

restricted by the extreme computing costs that might be

incurred from brute force numerical optimization. How-

ever, useful design methods have been devised for vari-

ous simplified cases, such as two-dimensional airfoils in

viscous flows [17] and wings in inviscid flows. The com-

putational costs for these methods result directly from the
vast number of flow solutions that are required to obtain

a converged design.

Alternatively, it has been recognized that the designer

generally has an idea of the kind of pressure distribu-
tion that will lead to the desired performance. Thus, it is

useful to consider the inverse problem of calculating the

shape that will lead to a given pressure distribution. The
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method is advantageous, since only one flow solution is

required to obtain the desired design. Unfortunately, a

physically realizable shape may not necessarily exist, un-

less the pressure distribution satisfies certain constraints.

Thus the problem must be very carefully formulated.
The problem of designing a two-dimensional profile

to attain a desired pressure distribution was first studied

by Lighthill, who solved it for the case of incompressible
flow with a conformal mapping of the profile to a unit

circle [13]. The speed over the profile is

1
q -----_ IV_l,

where _b is the potential which is known for incompress-

ible flow and h is the modulus of the mapping function.

The surface value of h can be obtained by setting q = qd,

where qd is the desired speed, and since the mapping func-

tion is analytic, it is uniquely determined by the value of

h on the boundary. A solution exists for a given speed qoo

at infinity only ff

q dO = qoo ,

and there are additional constraints on q if the profile is

required to be closed.
The difficulty that the objective may be unattainable

can be circumvented by regarding the design problem as

a control problem in which the control is the shape of the

boundary. A variety of alternative formulations of the

design problem can then be treated systematically within

the framework of the mathematical theory for control of

systems governed by partial differential equations [14].

This approach to optimal aerodynamic design was intro-

duced by Jameson [10, 11], who examined the design

problem for compressible flow with shock waves, and

devised adjoint equations to determine the gradient for

both potential flow and also flows governed by the Euler

equations. More recently Ta'asan, Kuruvila, and Salas,

implemented a one shot approach in which the constraint
represented by the flow equations is only required to be

satisfied by the final converged solution [20]. Pironnean

has also studied the use of control theory for optimum

shape design of systems governed by elliptic equations
[15].



Suppose that the control is defined by a function .Tr(_)
of some independent variable _ or in the discrete case a
vector with components .T_. Also suppose that the desired
objective is measured by a cost function I. This may, for
example, measure the deviation from a desired surface
pressure distribution, but it can also represent other mea-
sures of performance such as lift and drag. Thus the
design problem is recast into a numerical optimization
procedure. This has the advantage that if the objective,
say, of a target pressure distribution, is unattainable, it is
still possible to find a minimum of the cost function. Now
a variation 5.7" in the control produces a variation 5I in
the cost. Following control theory, 6I can be expressed
to first order as an inner product

6I = (_ , 5.T) ,

where the gradient 6 is independent of the particularvari-
ation &T, and can be determined by solving an adjoint
equation. For a discrete system of equations

(6, 5_-) - _ 61&7"i

and for an infinitely dimensional system

(6, 6_ = f 6 (O 5_" d_.

In either case, if one makes a shape change

&7r = -;_6, (1)

where A is sufficiently small and positive, then

61 = -,x (6, 6) < o

assuring a reduction in I.
For flow about an airfoil or wing, the aerodynamic

properties which define the cost function are functions of
the flow-field variables (w) and the physical location of
the boundary, which may be represented by the function
.T, say. Then

I = I(w,.7"),

and a change in Y results in a change

0/7" 5w 8/r
5i = + 79-yss:, (2)

in the cost function. As pointed out by Baysal and Ele-
shaky [2] each term in (2), except for 5w, can be easily
obtained. _-ffa_and _-_ can be obtained directly without
a flowfield evaluation since they are partial derivatives.
5.7"can be determined by either working out the exact

analytical values from a mapping, or by successive grid
generation for each design variable, so long as this cost
is significantly less then the cost of the flow solution.
Brute force methods evaluate the gradient by making a
small change in each design variable separately, and then
recalculate both the grid and flow-field variables. This

requires a number of additional flow calculations equal to
the number of design variables. Using control theory, the
governing equations of the flowfield are introduced as a
constraint in such a way that the final expression for the
gradient does not require reevaluation of the flowfield. In
order to achieve this 5w must be eliminated from (2). The

governing equation R expresses the dependence of w and
_r within the flowfield domain D,

R (w, _-) = 0,

Thus 5w is determined from the equation

6R= _ 5w+ 5_=0.

Next, introducing a Lagrange Multiplier Xb,we have

61

(3)

= oIT6w cgI T -- _bT OR OR

Choosing _bto satisfy the adjoint equation

OR] T OI (4)

the first term is eliminated, and we find that

5i = 655 (5)

where

6= •

The advantage is that (5) is independent of 5w, with the
result that the gradient of I with respect to an arbitrary
number of design variables can be determined without
the need for additional flow-field evaluations. The main

cost is in solving the adjoint equation (4). In general, the
adjoint problem is about as complex as a flow solution. If
the number of design variables is large, the cost differen-
tial between one adjoint solution and the large number of
flowfield evaluations required to determine the gradient
by brute force becomes compelling. Instead of introduc-
ing a Lagrange multiplier, _b,one can solve (3) tor 6w
as

and insert the result in (2). This is the implicit gradient
approach, which is essentially equivalent to the control
theory approach, as has been pointed out by Shubin and
Frank [18, 19]. In any event there is an advantage in
determining the gradient 6 by the solution of the adjoint
equation.

After making such a modification, the gradient can be
recalculated and the process repeated to follow a path of
steepest descent (1) until a minimum is reached. In order



to avoid violating constraints, such as a minimum accept-

able wing thickness, the gradient may be projected into

the allowable subspace within which the constraints are

satisfied. In this way one can devise procedures which

must necessarily converge at least to a local minimum,
and which can be accelerated by the use of more so-

phisticated descent methods such as conjugate gradient or

quasi-Newton algorithms. There is the possibilityof more
than one local minimum, but in any case the method will

lead to an improvement over the original design. Fur-
thermore, unlike the traditional inverse algorithms, any

measure of performance can be used as the cost function.

The next section presents the formulation for the case

of airfoils in transonic flow. The governing equation is

taken to be the transonic potential flow equation, and the

profile is generated by conformal mapping from a unit
circle. Thus the control is taken to be the modulus of

the mapping function on the boundary. This leads to a

generalization of Lighthill's method both to compressible

flow, and to design for more general criteria Numeri-

cal results are presented in Section 3. The mathematical

development resembles, in certain respects, the method

of calculating transonic potential flow developed by Bris-
teau, Pironneau, Glowinski, Periaux, PeaTier and Poirier,

who reformulated the solution of the flow equations as a

least squares problem in control theory [3].

2 AIRFOIL DESIGN FOR POTENTIAL FLOW US-

ING CONFORMAL MAPPING

Consider the case of two-dimensional compressible invis-

cid flow. In the absence of shock waves, an initially irro-

rational flow will remain irrotational, _md we can assume

that the velocity vector q is the gradient of a potential ¢.

In the presence of weak shock waves this remains a fairly

good approximation.

D

O

0
la: z-Plane, lb: a-Plane.

Figure 1 : Conformal Mapping.

Let p, p, c, and M be the pressure, density, speed-of-

sound, and Mach number q/c. Then the potential flow

equation is
V- (pV¢) = 0, (6)

where the density is given by

while

(7)

while

q2 = u2 + v 2. (12)

The condition of flow tangency leeds to the Neumann

boundary condition

1 o¢
v = --- = 0 onC. (13)

h Or

in the far field, the potential is given by an asymptotic

estimate, leading to a Dirichlet boundary condition at r =

0 [61.

Suppose that it is desired to _:hieve a specified veloc-

ity distribution qd on C. Introduce the cost function

I = _ (q - qd) 2 dO,

The design problem is now tre_ as a control problem
where the control function is the mapping modulus h,

which is to be chosen to minimize I subject to the con-

stralnts defined by the flow equations (6--13).
A modification 6h to the mapping modulus will result

in variations 6¢, 6u, 6v, and 6p to the potential, velocity

components, and density. The resulting variation in the
cost will be

6I = (q qd) 6qdO, (14)

P'Y c2 7P
P- "7M£' = --.p (8)

Here M_ is the Mach number in the free stream, and the

units have been chosen so that p and q have a value of

unity in the far fled.
Suppose that the domain D exterior to the profile C

in the z-plane is conformally mapped on to the domain
exterior to a unit circle in the a-plane as sketched in

Figure 1. Let R and 0 be polar coordinates in the a-plane,

and let r be the inverted radial coordinate -_. Also let h
be the modulus of the derivative of the mapping function

h = _. (9)

Now the potential flow equation becomes

0 r0
0--_(p¢0)+ _r(rP_br)=0 inD, (10)

where the density is given by equation (7), and the cir-

cumferential and radial velocity components are

r_b0 r2¢r

u = T' v = T' (11)



where, on C, q = u. Also,

6¢o 6h _ 6h6u = r--_- - u_, 6v = r2_ - v_,

while according to equation (7)

ap pu Op pv
Ou- c 2' Ov- c2'

It follows that 6¢ satisfies

0 (pM2Co6---_)-r c9

where

L 0 puv r 0
O IP_,l-c2)O0 -_ -ff;rJ-'- O0

+rb--;r p 1-_- r_r c2 O0 .(15)

Then, ff ¢ is any periodic dffferentiable function which
vanishes in the far field,

¢--L6¢dSr2 = fDPM2V_b.Vdd6-_h h dS, (16)

where dS is the area dement r dr d0, and the right hand

side has been integrated by parts.

Now we can augment equation (14) by subtracting the
constraint (16). The auxiliary function ¢ then plays the

role of a Lagrange multiplier. Thus,

61= fc(q-qa)q6--hh dO- /c6o_ (qZhq------Aa)dO

-fDCL6¢dS+fDPM2V¢'VC_dS.

Now suppose that ¢ satisfies the adjoint equation

L¢ = 0 in D (17)

with the boundary condition

Or p OO -- onC. (18)

Then, integrating by parts,

and

(19)

Here the first term represents the direct effect of the

change in the metric, while the area integral represents

a correction for the effect of compressibility. When the

second term is deleted the method reduces to a variation

of Lighthill's method [13].

Equation (19) can be further simplified to represent

61 purely as a boundary integral because the mapping

function is fully determined by the value of its modulus

on the boundary. Set

dz
log _ = F + i/_,

where

.T=log _ =logh,

and
6h

6_" = --.
h

Then 9v satisfies Laplace's equation

A.T=O inD,

and if there is no stretching in the far field, Y --, 0.
Also 6Y satisfies the same conditions. Introduce another

auxiliary function P which satisfies

AP = pMZV¢-V¢ In D, (20)

and

P=O onC.

Then, the area integral in equation (19) is

foAP6YdS = fc 6yOP
f

dO -,- Jo PA 6Y dS,

and finally

61 = fc_&TdO,

where ._'e is the boundary value of Y, and

OP

(_ = -_r -- (q -- qd) q. (21)

"Ibis suggests setting

6_'_= -),#

so that if), is a sufficiently small positive quantity

61 = - foAG2dO< 0

Arbitrary variations in _r cannot, however, be admitted.
The condition that Y ---, 0 in the far field, and also the

requirement that the profile should be closed, imply con-

straints which must be satisfied by Y on the boundary C.

Suppose that log (_-_) is expanded as a power series

z c-logdz oo= -- (22)

4



whereonlynegativepowersare retained, because other-

wise ( dz_) would become unbounded for large a. The

condition that Y _ 0 as o- _ c<_implies

co:O.

Also, the change in z on integration around a circuit is

Az = _ de = 27ri cl,

so the profile will be closed only if

CI_0.

In order to satisfy these constraints, we can project _ onto

the admissible subspace for jr- by setting

Co = Cl : O. (23)

Then the projected gradient _ is orthogonal to G - _, and
if we take

_fo = -A#,

it follows that to first order

61 = -/cA_dO=-/cA(_+_-_)_dO

= -fca 2dO<O.

If the flow is subsonic, this procedure should converge

toward the desired speed distribution since the solution
will remain smooth, and no unbounded derivatives will

appear. If, however, the flow is transonic, one must allow

for the appearance of shock waves in the trial solutions,

even if qd is smooth. Then q- qd is not differentiable. This
difficulty can be circumvented by a more sophisticated
choice of the cost function. Consider the choice

l/c( (dZ'_2'_ dO, (24)

where A_ and A2 are parameters, and the periodic function

Z(O) satisfies the equation

aaZ

AIZ -- A2-_- = q - q_. (25)

Then,

dZ d

_I = fc ()_lZ_Z + A_-dg-_Z) clO

= fcZ(At6Z-A2 'Z) dO= /cZ'qdO.

Thus, Z replaces q - qd in the previous formulas, and if

one modifies the boundary condition (18) to

0_b 1O (Z)0--r- - p 00 on C, (26)

the formula for the gradient becomes

OP

G- Or Zq (27)

instead of equation (21). Smoothing can also be intro-

duced directly in the descent procedure by choosing 6Ycc

to satisfy

0 0

_>-_- _/_ _:r_= -,_, (28)

where fl is a smoothing parameter. Then to first order

__1 (6____,_ 0 _0 6_) dO

:((o)')1 6._"_+ ,6' <

The smoothed correction should now be projected onto

the admissable subspace.

The final design procedure is thus as follows. Choose

an initial profile and corresponding mapping function 3r.
Then:

1. Solve the flow equations (6-13) for ¢, u, v, q, p.

2. Solve the ordinary differential equation (25) for Z.

3. Solve the adjoint equation (15 and 17) or ,p subject

to the boundary condition (26).

4. Solve the auxiliary Poisson equation (20) for P.

5. Evaluate G by equation (27)

6. Correct the boundary mapping function _r by (5_'¢

calculated from equation (28), projected onto the

admissable subspace defined by (23).

7. Return to step 1.

NUMERICAL TESTS OF OPTIMAL AIRFOIL

DESIGN FOR POTENTIAL FLOW USING CON-

FORMAL MAPPING

The practical realization of the design procedure depends

on the availability of sufficiently fast and accurate numer-

ical procedures for the implementation of the essential

steps, in particular the solution of both the flow and the

adjoint equations. If the numerical procedures are not
accurate enough, the resulting errors in the gradient may

impair or prevent the convergence of the descent proce-

dure. If the procedures are too slow, the cumulative com-

puting time may become excessive. In this case, it was

possible to build the design procedure around the author's

computer program FLO36, which solves the transonic

potential flow equation in conservation form in a domain

mapped to the unit disk. The solution is obtained by a very

rapid multigrid alternating direction method. The original



scheme is described in Reference [7]. The program has

been much improved since it was originally developed,

and well converged solutions of transonic flows on amesh
with 128 cells in the circumferential direction and 32 cells

in the radial direction are typically obtained in 5-20 multi-

grid cycles. The scheme uses artificial dissipative terms
to introduce upwind biasing which simulates the rotated

difference scheme [6], while preserving the conservation

form. The alternating direction method is a generalization

of conventional alternating direction methods, in which

the scalar parameters are replaced by upwind difference

operators to produce a scheme which remains stable when

the type changes from elliptic to hyperbolic as the flow

becomes locally supersonic [7]. The conformal mapping

is generated by a power series of the form of equation (22)
with an additional term

(l - _) log (l - l)

tO allow for a wedge angle e at the trailing edge. The

coefficients are determined by an iterative process with
the aid of fast Fourier transforms [6].

The adjoint equation has a form very similar to the

flow equation. While it is linear in its dependent variable,

it also changes type from elliptic in subsonic zones of the.
flow to hyperbolic in supersonic zones of the flow. Thus,

it was possible to adapt exactly the same algorithm to

solve both the adjoint and the flow equations, but with re-

verse biasing of the difference operators in the downwind

direction in the adjoint equation, corresponding to the re-

versed direction of the zone of dependence. The Poisson

equation (20) is solved by the Buneman algorithm.

An alternative procedure would be to derive the ex-

act adjoint equation corresponding to the discrete equa-
tions which approximate the potential flow equation. This

would produce the exact derivative of the discrete cost

function with respect to the discrete control, at the ex-

pense of very complicated formulas and a costly inversion
proc_ure. The discrete adjoint equation would then be

a particular diacmfizafion of the differential adjoint equa-
tion corresponding precisely to the discretization used for

the flow equation. The efficiency of the present approach,

which uses separate discretizations of the flow and ad-

joint equations, depends on the fact that in the limit of

zero mesh width the discrete adjoint solution converges

to the true adjoint solution. This allows the use of a rather

simple discretization of the adjoint equation modeled after

the discrctization of the flow equation. Numerical exper-
iments confirm that in practice separate discretizations of

the flow and adjoint equations yields good convergence
to an optimum solution.

As an example of the application of the method, Fig-

ure 3 presents a calculation in which an airfoil was re-

designed to improve its transonic performance by reduc-

ing the pressure drag induced by the appearance of a shock

wave. The drag coefficient was therefore included in the

cost function so that equation (24) is replaced by

1/.( (dZ)')I= _ A1Z2+A2 _ dO+A3Cd,

where A3 is a parameter which may be varied to alter the

trade-off between drag reduction and deviation from the

desired pressure distribution. Representing the drag as

/cD= (p-p_)Na0,

the procedure of Section 2 may be used to determine the

gradient by solving the adjoint equation with a modified

boundary condition. A penalty on the desired pressure
distribution is still needed to avoid a situation in which

the optimum shape is a fiat plate with no lift and no drag.

It was also desired to preserve the subsonic charac-
teristics of the airfoil. Therefore two design points were

specified, Math 0.20 and Math 0.720, and in each case
the lift coefficient was forced to be 0.6. The composite
cost function was taken to be the sum of the values of the

cost function at the two design points. The transonic drag

coefficient was reduced from 0.0191 to 0.0001 in 8 design

cycles. In order to achieve this reduction the airfoil had

to be modified so that its subsonic pressure distribution
became more peaky at the leading edge. This is consis-

tent with the results of experimental research on transonic

airfoils, in which it has generally been found necessary

to have a peaky subsonic presure distribution in order to
delay the onset of the transonic drag rise. It is also impor-

tant to control the adverse pressure gradient on the rear

upper surface, which can lead to premature separation of

the viscous boundary layer. It can be seen that there is no

steepening of this gradient due to the redesign.

4 DESIGN FOR POTENTIAL FLOW USING A FI-

NITE VOLUME DISCRETIZATION SCHEME

While the use of conformal mapping, as it has been pre-

sented in sections 2 and 3, leads to an effective design

method for two dimensional profiles, it is not easy to treat

more complex configurations because of the difficulty in

devising appropriate numerical mapping methods. More-

over, conformal mapping is limited to two dimensional
transformations. In this section an alternative formula-

tion using a general coordinate transformation is adopted.

This is intended to be a precursor to the three dimensional

problem.

Consider the case of two-dimensional compressible

inviscid flow. A general transformation from cartesian

coordinates x and y to the coordinates _ and T}can be

represented by the transformation

K = o_ o_ .

6



Thepotentialflowequationcanbewrittenindivergence
formas

0--_ (pu) + (pv) = 0 in D, (29)

where u and v represent the Cartesian velocity compo-
nents. The coordinate transformations may be defined

u = 0x 0r Cg
o_t _ ¢.
Oy 0y

¢e } (30)
K T-_

= I, ¢n "

Also

¢( = 0"-"( Og Cx = K T Cr

¢. o_ ov ¢_ ¢y '
Orl Or_

Then

(pJU) + _ (pJV) = 0 in D.

where J is the Jacobian

(31)

Ox Oy Ox OV

d = det(K) - 0_ Or/ 07/0_"

Here, U and V represent the contravariant velocities

: __ Or/ -- 0"_" U

J ____ o_.m v
og og

Thus,

where

U = An¢e + A12¢n (32)

V = A12¢_ + A22¢n. (33)

An AI2 ]A = (KTK) -1 = AI2 A22

Consider first the case in which the cost function is

defined such as to achieve a target speed distribution:

= - (q - qa) 2ds
2

i/c (ds)= i (q-qa) 2 _ d_,
(34)

where qa is the desired speed distribution and C is the
airfoil surface.

The design problem is now treated as a control prob-
lem where the control function is the airfoil shape, which

is to be chosen to minimize I subject to the constraints

defined by the flow equations (29-33). The first variation
of the cost function is

M = /c(q-qa, i_q(d-_)d,

i/c (ds)-t-_ (q -- qd)2 _. -_ d(

= /_ (q -- qa) 0 (_¢) ,.

+l (q-q_):_ d(

c Odp d_ ds+ (q-qa)-O"_' ('_s) _'_d_, (35)

since on the wall

0¢ 0¢ 0_

q'_ - Os O( Os"

In general we need to find how a modification to the airfoil

geometry causes a variation 6¢, as well a variation in the

grid parameters 6A ax, 6A _2,6A_, and 6J. The variations

in U, V and p are

_U = 6 (All) ¢( + An6¢_ + _ (Ai2)¢o + A126¢n

8V = _ (A12)¢_ + A12_¢_ + 6 (A22)¢n + AzzSCn

6p 0 v o ]P 6¢d _0

2c 2

It follows that 6¢ satisfies

L6¢
0

Q (,SJ, 6An,/iA12, 8A2_ )
0_
0

---P (6J, 6An, 6At:, 6A_.),
On

+

O( +pd (A12 - vv_ o

[ -" 'A uv' a ]

O i_at 12- _-r)'_
V _ ,9

+pJ (Az_- 7r)

wh_e

(36)

(37)

and

Q (6J, 6An, 6A12, $A=) = pU$J

+pJ¢_ (1 - -_-_--c2]U¢¢ '_ 6An

+PJCn (1 -- ---_-jU¢('_ 6A12

+PJCn \-'_c2 ] _A22

P (6J, bAn, _AI2, 6A22) = pV6d



{

+ps¢, [1- 2C2 ] _A22

+pJ¢6 (1- VC. _ 6A]ac2 J

+PJCf k, 2c2 ,]

If¢ isany periodicfunctionvanishinginthe farfield,

equation(36)can be multipliedby ¢ and integratedover

thedomain. Afterintegratingtherighthand sideby parts
we arriveat

o CL6¢d_drl =/D 0¢ OC p d_dr 1

+ fc {¢pJ [6A,2_h_ + 6Az#_,_] } d_. (38)

Now subtracting (38) from (35),

6I=-_ O(q-o_ qe) &kd_

1 " ds

+

-/D CL6$d_, drl

+ /D 6¢-_-_Q + _ P d_drl

+ Iv {¢pJ [6A,20_ + 6A22¢,] } d_.

Then setting up the adjoint system we have

L¢=0 inD, (39)

with the boundary condition

pJ (A,2¢_ + A_¢,) = -_ (q - qa ). (40)

After applying the second form of Green's theorem to (39)

we get

/D CL6$dS =/c { ¢pJ [6A12¢, + 6A22¢_] } d_

+/c {6¢pg [6A,2¢_ + 6Az2¢,1] } d_.

Finally the variation can be defined as

61 = _ (q-qd) 26 d_

+ fc (q - q'_) -_ -_ d_

+ fD O"_Q +'ff_O¢OC p d_drl. (41)

No general analytic grid transformation is generally
available for the finite volume formulation. Furthermore,

the variation with respect to the grid quantities is now

spread into 6An, 6A12, 6A22, and 6J instead of just the
modulus of the transformation as was the case for confor-

mai mapping. Therefore, to construct 61, an independent
basis space of perturbation functions bi, i = 1,2,..., n

(n = number of design variables) is chosen that allows

for the needed freedom of the design space. Thus, the

shape _ now becomes ._(bi), where the functions bi now
represent the control. The vmations 6An, 6A12, 6A22,

and 6J are obtained by a direct finite difference proce-

dure with respect to each design variable b_. Once 6I is

obtained, any optimization procedure can be employed to

minimize the cost with respect to the given basis b_.

If the flow is subsonic, this procedure should converge

toward the desired speed distribution since the solution
will remain smooth, and no unbounded derivatives will

appear. If, however, the flow is transonic, one must allow

for the appearance of shock waves in the trial solutions,

even if qe is smooth. In such instances q - qe is not dif-
ferentiable. As in section 2, the cost function is redefined
as

lie ( (d--_) 2)I= _ A1Z 2+A2 d_,

where A1 and A2 are parameters, and the periodic function

Z(_) satisfies theequation

_Z

AIZ-A2-d-- _" =q-qd. (42)

Then,

Thus, Z replaces q - qe in the previous formula and one
modifies the boundary condition (40) to

H + = -Off (Z) onC. (43)

For the case where the cost function is drag, (34) is

replaced by,

I = fc OY d

The first variation of the cost function is now,

61 =

(44)

N

¢ OY df

+Jcp6(_)d_. (45,



Thus,(41)becomes

6I= -

+

O_l,0 + O_l,p d_d_, (46)

where the boundary condition on _b, (40) or (42), is re-

placed with

or

d2Z OV

The entire procedure can be summarized for the cost func-

tion based on target speed distribution as follows:

1. Solve the flow equations (29-33) for $, u, v, q, p,

U, and V.

2. Smooth the cost function if necessary by (42).

3. Solve the adjoint equation (37 and 39) for _bsubject

to the boundary condition (40) or (43).

4. For each i independently perturb the design vari-
ables, bi, and calculate the necessary metric vail-

ations (6All, _Ax2, 6A22, 6J, and 6 _ ) by re-

calculating the perturbed grid with automatic grid

generation.

5. Directly evaluate 6I by equation (41).

6. Project 6I into a feasible direction subject to any
constraints to obtain 6L

7. Feed bY as the gradient with respect to bi to a quasi-

Newton optimization procedure.

8. Calculate the search direction with a quasi-Newton

algorithm and perform a line search.

9. Return to 1 if the process has not converged.

In practice the method resembles that used by Hicks et
al. [17] with the control theory replacing the brute force,

finite difference based, gradient calculation. The current

formulation has an advantage by requiring computational

work proportional to 2 + m flow solver evaluations (m

being the number of calculations required per line search)

per design cycle as opposed to 1 + m + n. Thus, un-

like conventional design optimization programs, the cur-

rent method's computational cost does not hinge upon the

number of design variables provided the grid regeneration
is fast and automatic. The method also has the advantage

of being quite general, allowing arbitrary choices for both

the design variables and the optimization technique.

NUMERICAL IMPLEMENTATION OF THE

GENERALIZED POTENTIAL FLOW DESIGN

METHOD

The practical implementation of the generalized poten-

tial flow design method, as with the conf0rmal potential
method, relies heavily upon fast accurate solvers for both

the state (_) and co-state (_b) fields. Further, to improve

the speed and realizability of the methods, a robust choice

of the optimization algorithm must be made. Finally, ap-

propriate design variables must be chosen which allow
sufficient freedom in realizable designs. In this work, the

author's FLO42 full potential computer program and the

QNMDIF (by Gill, Murray and Wright [4]) quasi-Newton

optimization algorithm are employed.

In FLO42 the flow solution is obtained by a rapid

multigrid alternating direction method [7]. The scheme

uses artificial dissipative terms to introduce upwind bi-

asing which simulates the rotated difference scheme [6]

while preserving the conservation form. The alternating

direction method is a generalization of conventional alter-

nating direction methods in which the scalar parameters

are replaced by upwind difference operators to produce
a scheme which remains stable as the equations change

type from elliptic to hyperbolic in accordance with the

flow becoming locally supersonic [7].

QNMDIF is an unconstrained quasi-Newton optimiza-
tion algorithm that calculates updates to a Cholesky fac-

tored Hessian matrix by the BFGS (Broyden-Fletcher-

Goldfarb-Shalmo) rank-two procedure. Hence, informa-

tion about the curvature of the design space feeds in

through the successive gradient calculations.

Since the primary computational costs arise from not

only the flow solution algorithm but also the adjoint solu-

tion algorithm, both need to be computationally efficient.

The adjoint equation has a form very similar to the flow

equation. While it is linear in its dependent variable,

it also changes type from elliptic (in subsonic zones of
the flow) to hyperbolic (in supersonic zones of the flow).

Thus, it was possible to adapt exactly the same algorithm

to solve both the adjoint and the flow equations, but with

reverse biasing of the difference operators in the down-

wind direction for the adjoint equation, corresponding
to its reversed direction of the zone of dependence. A

multigrid method is used to accelerate the convergence

of a generalized alterating direction scheme in a manner
similar to the flow solver.

Design variables are chosen with the following form,

suggested by Hicks and Henne [5]:

_[ _--t_) _2b(z) = sin _a'z_,0,,J

bCz) = z t' (1 - x)e -t'_,

where t _and t2 control the center and thickness of the per-

turbation and z is the normalized chord length. When dis-

tributed over the entire chord on both upper and lower sur-

faces these analytic perturbation functions admit a large



possibledesignspace.Theyhavetheadvantageofbe-
ingspacebasedfunctions,asopposedtofrequencybased
functions,andthustheyallowforlocalcontrolofthede-
sign.Theycanbechosensuchthatsymmetry,thickness,
orvolumecanbeexplicitlyconstrained.Further,particu-
larchoicesofthesevariableswillconcentratethedesign
effortin regionswhererefinementisneeded,whileleav-
ingtherestoftheairfoilsectionvirtuallyundisturbed.The
disadvantageofthesefunctionsisthattheydonotforma
completebasisspace,noraretheyorthogonal.Thus,they
donotguaranteethatasolution,forexample,ofthein-
verseproblemforarealizabletargetpressuredistribution
will necessarily be attained. Here they are employed due

to their ease of use and ability to produce a wide variation

of shapes with a limited number of design variables.

The generalized potential flow design algorithm based

on the finite volume scheme has been applied to a vari-

ety of test cases, which are described in the following

paragraphs. These include both non-lifting cases, where

a symmetric target pressure distribution is specified and

the optimization is started from an arbitrary symmetric

initial guess, and lifting cases where the target pressure
distribution is specified, and finally cases which verify the

capability of the method to find profiles with minimum

drag.

The first non-lifting example shown in Figure 4, illus-
trates that for subsonic flow, Moo = 0.2 and o = 00, a

given airfoil shape, in this case a NACA 64012, can be

recovered by starting from an arbitrary shape and speci-

fying the target pressure distribution. A close look at the
final solution shows that a small discrepancy is evident at

the trailing edge. This may be associated with the lack of

completeness of our basis space. In the next example, see

Figure 5, the design takes place at Moo = 0.8, a = 0%
where the initial NACA 0012 airfoil is driven towards the

subsonic pressure distribution of the NACA 64021. In

this case the target pressure distribution exceeds Up* for

Moo = 0.8. Therefore, the pressure distribution repre-
seats shock free transonic flow. Since, in general, such a

pressure distribution may not be realizable, the program

approaches the target with the nearest feasible pressure
distribution. An examination of Figure 5 demonstrates

that a very weak shock in the designed pressure distribu-

tion replaces the smooth transition to subsonic flow seen

in the target distribution. In the final example non-lifting

case of Figure 6, an arbitrary pressure distribution which
does contain a shock wave and is realizable, is used as

the target. Here the computer program was able to obtain

the corresponding airfoil geometry along with the correct
shock wave location with a high degree of accuracy, as

can be seen both in the pressure distribution and in the
airfoils.

The second group of test cases address the problem of

attaining a desired pressure distribution for lifting airfoils.
The most convenient method of obtaining such solutions

with the present design method is to determine the lift co-

efficient associated with the target pressure distribution,

and match this lift with the initial airfoil. The design pro-

gresses with the flow solver and the adjoint system being

driven by constant circulation instead of fixed angle of

attack. The first example using this technique, shown in

Figure 7, drives the NACA 0012 airfoil toward the tar-

get pressure distribution for the NACA 64A410 airfoil at
Moo = 0.735, o_ = 0 °, and Ci = 0.75. This case requires

a shift in the shock location and a significant change in

the profile shape such that the target pressure distribution
is obtained. The final solution almost exactly recovers

the pressure distribution and the airfoil shape. In the next
example, Figure 8, the NACA 0012 airfoil is again used

as the starting condition to obtain the pressure distribution

of the GAW72 airfoil operating at Moo = 0.7, a = -2 ° ,

and C_ = 0.57. This case is difficult since the target air-

foil has a cusped trailing edge while the initial airfoil has a

finite trailing edge. As was seen in some of the non-lifting

cases, there are small discrepancies evident near the trail-

ing edge that may be due to the incomplete basis of the

chosen design variables. The difference in the profiles

between the final design and actual GAW72 is partly due
to the fact that the GAW72 coordinates place the trailing

edge at a non-zero y ordinate while the NACA 0012 places
the trailing edge at y = 0. Also, the redesigned airfoil is

subject to an arbitrary rotation since the angle of attack is

free during optimization. The last test case in which the

design program is run in inverse mode involves driving
the NACA 0012 airfoil at Me,, = 0.75 to obtain the target

pressure distribution of the RAE airfoil at the same Mach
number, a = 1.0', and Cz = 0.80. Due to the steep

favorable pressure gradient at the leading edge upper sur-
face and the strong shock exhibited (see Figure 9) by the

RAE airfoil at these conditions this case represents quite

a difficult test for the program. The method recovers the

target pressure distribution almost exactly. A comparison

of the profiles reveals that the the designed airfoil has no

observable differences when overlayed with the original
airfoil.

The last group of results introduces drag as the cost

function. Again the design process is carried out in the
fixed lift mode. In Figure 10, the first drag minimization

example, a NACA 0012 is again used as a starting airfoil.

The design takes place at Moo = 0.75 and C: = 0.50

where a strong shock causes considerable wave drag in

the initial airfoil. To make the problem interesting, the

optimization is carried out such that symmetry of the de-

sign is preserved. The final design is a symmetric airfoil

with an increased maximum thickness that operates at the

same lift coefficient, but has a reduction in drag from
Ca = 0.0127 to Ca = 0.0016. In the final test case (see

Figure 9) the camber distribution is optimized instead of
thickness distribution. The design starts from a NACA

64A410 airfoil operating at Moo = 0.75, and Ct = 0.60

which displays 42 counts of drag according to the potential

flow calculation. By allowing only changes to the camber

distribution, a final airfoil is produced which maintains

Cj = 0.60 but does so with only 4 counts of drag.

10



6 DESIGNOFAIRFOILSUSINGTHEEULER

EQUATIONS

This section extends the application of control theory for

aerodynamic shape optimization to the Euler equations for

two dimensional flow. Consider the case of compressible
flow over an airfoil. In the absence of separation and other

strong viscous effects, the flow is well approximated by

the Euler equations. In contrast to the previous implemen-

tations which relied on the isentropic potential equation,

here strong inviscid shocks are modeled correctly with

entropy production. Consider the flow in a domain D.
The profile defines the inner boundary C, while the outer

boundary B is assumed to be distant from the profile. Let

p, p, u, v, E and H denote the pressure, density, Cartesian
velocity components, total energy and total enthalpy. For

a perfect gas

p= (7- 1)p E-_

and

pH = pE .4-p, (50)

where 7 is the ratio of the specific heats. The Euler

equations may then be written as

0w Of tgg

_-+_x+_yy =0 inD, (51)

where x and y are Cartesian coordinates, t is the time
coordinate and

pu
W ---- pv '

pE

f= pu 2 + p pvu . (52)
puv ' g = pv 2 + p

pull pv H

Consider a coordinate transformations to computa-

tional coordinates 5, 0 with the transformation matrix

K = o¢ o_
ou '

o_ o_

and the Jacobian

Ox Oy cgx Oy
J-

0_ 0_7 Oo O_"

Introduce contravariant velocity components

( U}V =K-I{ u}v = Jl [ °-_-_Lv_°"a_

The Euler equations can be written as

OW OF OG

--_- -_- _- + -b--_-y= 0 inD,

-o_ u
ox I)

(53)

with

W=J pu

pv

oE

F = J pUu + _._p G = J pVu + _p
' ,9_ "

pVv + ouppUv + ovP

pU H pV H

(54)

Assume now that the computational coordinate system

conforms to the airfoil section in such a way that the

surface C is represented by _ = 0. Then the flow is

determined as the steady state solution of the equation

(54) subject to the flow tangency condition

v = o on C, (55)

At the far field boundary B, conditions are specified for

incoming waves, while outgoing waves are determined

by the solution.
Consider the case of the inverse problem where the

cost function may be defined as

1/c 1/c (d_)I = _ (P - Pa): as = -_ (19- pa) 2 d_,

where Pa is the desired pressure. The design problem

is now treated as a control problem where the control
function is the airfoil shape, which is to be chosen to

minimize I subject to the constraints defined by the flow

equations (53-55). A variation in the shape will cause a
variation _p in the pressure in addition to a variation in

the geometry and consequently the variation in the cost
function becomes

61 =

1
(56)

Since p depends on w through the equation of state

(51-52), the variation 6p can be determined from the
variation 6w. Define the Jacobian matrices

Of Og
At = _w, A2= O'-'w' Ci = E JK_'Aj. (57)

Then the equation for 6w in the steady state becomes

O_ (6F) + 0-_ (6G) = 0, (58)

11



where

6F
= C_6wq-6 J_x f-k6\-_y/g

Now, multiplying by a vector co-state variable ¢ and

integrating over the domain

/peT \--_-+(06F 06G) d_drl=O 'Orl]

and if ¢ is dffferentiable this may be integrated by parts

to give

(- -ooaT did.=D -F" On ]

z (nteT 6F + n2¢T 6G) d_

+/c (nleT SF + n2_bT6G) d_,

where ni are the components of a unit vector normal

to the boundary. No boundary integrals appear in the

q direction because the mesh is assumed to be of O-

type, with the result that the solution is periodic in the
coordinate thereby canceling the '7 boimdary integrals.

Thus the variation in the cost function may now be written

1

f oa T .,.,
+ Jo + ,9,7 /

d,7

- fn (nleT6r + n2¢T6G) d_

-/c (nleT6r + n2¢TSG) d_.

On the profile n_ = 0 and n2 = -I. It follows from

equation (55) that

6a=J e (sg)

0 0

Suppose now that ¢ is the steady state solution of the

adjoint equation

0¢ T 0_b T (9¢

C, _--Ci_=0 inD. (60)

At theouterboundary incoming characteristicsfor¢ cor-

respondtooutgoingcharacteristicsfor6w. Consequently,

one can chooseboundary conditionsfor¢ suchthat

nieT Ci_w = O.

Then if the coordinate transformation is suchthat 6 (JK-t)

is negligible in the far field, the only remaining boundary
term is

c eT 6Gd_.

Thus by letting f satisfy the boundary condition,

J ¢2 "q'¢3_y =--(,P-Pd)-d- _ onC, (61)

we find finally that

1/c (ds)

+/=
+/c{¢,,(J_)+¢,,(J_)}pd_. (62,

If the flow is subsonic, this procedure should converge

toward the desired pressure distribution since the solution
will remain smooth, and no unbounded derivatives will

appear. If, however, the flow is transonic, one must allow
for the appearance of shock waves in the trial solutions,

even if Pd is smooth. In such instances p - Pd is not dif-

ferentiable. As in the case of potential flow, this difficulty

can be circumvented by a more sophisticated choice of
the cost function. Consider the choice

1re( Z 2 (d__)') dsI = ,x, +),:

where A_ and )t2 are parameters, and the periodic function

Z(_) satisfies the equation

tFZ
AIZ- A2-77_._=P--Pal.

. dZ d 6Z) ds_-- /c (AIZ_Z.-[- A2--_-_ -_d,

aa 6Z) ds= fc Z (A, 6Z - )t,-_ -_d_

= Z6q- d .

(63)

Thus, Z replaces P--Pal with acorresponding modification

to the boundary condition for the adjoint equations.

A convenient way to treat an airfoil is to use a confor-

real mapping of the profile in the z plane to a near circle

in the a plane, followed by shearing of the radial coor-

dinate m make the system boundary conforming. Polar

coordinates are introduced in the mapped plane _r. When

mapped back to the physical plane this gives a smooth,

12



nearlyorthogonalgrid. Thisprocedureis intermediate
betweentheuseof afull conformalmappingasinsec-
tion2 andanarbitrarynumericallygeneratedgridasin
section4. Wecannowspecializeourgeneralizeddesign
proceduretotreatthisgridsystem.Definethefirstcon-
formalmappingfromz to _r by letting the derivative of

the mapping function be

dz
-- = he i_.
da

Now using polar coordinates r, and/9 in the cr plane, the
first transformation matrix is

while the fluxes are

hF

and

h[0?+S) G-S_F] =

+ h + S)s + S¢c]g
zCg -- y¢f.

Thus the Euler equations assume the form

it, c]= h -_ ((77+ S) h2W)
Ye Yr --CS S '

0 O (h(rl+S)G_hS_f)=O,
and we can define contravariant velocities + _-_ (hF) +

V = 'c s v

where

s = sin (¢ - 0), c = cos (fl - 0).

The Euler equations can now be represented in the a plane
as

0 (rh2W) O(hF) 0 (rhG) _ 0 in D, (64)
Ot +_+ Or

where

W = pu

pv

pE

F= pUu + sp , G= pVu + cp .

pUv - cp pVv + sp

pUH pVH

(65)

Now let the final computational coordinates be defined by

a radial shearing transformation

0=e, r= .+s(e)

and the transformation matrix

K2= _ _ = 1 0 , det(K2)=l.
Or Or 08 1

Now we can identify the complete transformation matrix
as

K=KIK2=h [ rs+S_c c ]-re + S_s s '

while the surface tangency condition on the velocity be-

comes

x_v - y_u = h [(r/+,_q)V-S_U] = O.

Now we take S(e) as the control. It is also convenient to

represent the inverse problem by the cost function

lfc 1£1 = _ (p - pd) 2dO = I = _ (p - pa) 2d_.

This eliminates terms in 6 _- from the gradient. The
variations in the fluxes become

6(hF) = Cl6w

6 [h (r] + S) G - hSe F] = C26w + h6SG - h6Sc F

where C1 and 6"2 are the Jacobian matrices defined in

equation (57). Choosing ¢ to satisfy the adjoint equation

(60) with the boundary condition

=e¢3 - y_¢2 = h [(,7+ S)s + S_c] ¢. = v - v_

the variation in the cost reduces to

,51 = /,_ (P - Pa) 6pd_

= ./,_ ¢7" (6ShG - 68ehF' ) de

+ /De 0"_7" 0 (6ShG+6S ehF) dedO,

where F and G are the fluxes defined in equation (65),

and P and G are F and G with the pressure terms deleted.
Define

P= ¢7"hP+f¢7":--77(hF)d,7

Q = CTh_+fcr_---_(hG)dq.

13



Then

61 =

where the gradient is

OP

G = Q + "_-. (66)

The entire procedure can be summarized as follows.

1. Solve the flow equations (51-55) forp, u, v, p, E,
H, U, and V.

2. Smooth the cost function if necessary by (63).

3. Solve the adjoint equations (60) for tp subject to the

boundary condition (61).

4. Calculate P and Q from the variation in the control

sff).

5. Evaluate g by equation (66)

6. Project g into a feasible direction subject to any
constraints to obtain _.

7. Correct the mapping in the direction of steepest
decent

6s(_) = -_¢.

or by using _ as the gradient in a quasi-Newton or

conjugate gradient search method.

8. Return to 1.

7 IMPLEMENTATION OF THE E1LILER BASED

DESIGN METHOD

The practical implementation of design method relies

heavily upon fast accurate solvers for both the state (w)

and co-state (_b) fields. Further, to improve the speed

and realizability of the method, a robust choice of the
optimization algorithm must be made. In this work, the

author's FLO82 full computer program has been used to

solve the Euler equations. This program uses a multi

stage time stepping scheme with multi grid acceleration

to obtain very rapid steady state solutions, typically in 25

steps [8, 9]. The adjoint equations are solved by a similar

method, in which the flux calculations for the Euler equa-

tions are replaced by the corresponding formulas for the

adjoint equation.

In the initial tests a simple gradient procedure has

been used as the optimization process. To preserve the
smoothness of the profile the gradient is smoothed at each

step in a similar manner to that used in the method of

section 2. Thus the change in the shape function ,5 (_) is
defined by solving

tiS - _---_3_---JS = -AG,

where/3 is a smoothing parameter. Then, to first order,
the variation in the cost is

6I = / g6Sd_

i'[. (0)']= - 6s'+/_ -_6s de

< O.

The option to minimize the pressure drag coefficient

1 Sc Po"_Oyd_'s = c, -  pUq 7

where _ is the chord length, has also been included. To

prevent the procedure from trying to reduce drag by re-

ducing the profile to a non-lifting flat plate a target pres-
sure distribution is retained in the cost function, which

becomes

l /CI = _t'li (19-- pd) 2 d_ + _2Cd

where 1)1 and t2 are weighting parameters. Also the

calculations are performed at a fixed lift coefficient corre-

sponding to that of the target pressure distribution, while
the angle of attack is allowed to vary as needed. Three

test cases are presented for the design algorithm. The

first two address the problem of attaining a desired pres-
sure distribution. The first example using this technique,

shown in Figure 12, drives the Kom airfoil toward the

target pressure distribution for the NACA 64A410 air-
foil at Moo = 0.75, a = 0°, and CI = 0.7. This case

requires a shift in the shock locationand a significant

change in the profile shape such that the target pressure
distribution is obtained. The final solution almost exactly

recoversthepressuredistributionand theairfoilshape.In

the nextexample, Figure 13,the Kom airfoiloperating

atMoo = 0.78 isused asthe startingconditiontoob-

tainthepressuredistributionofthcsame airfoiloperating

atMoo = 0.75,a = 0°,and Ci = 0.64. This case is

difficultsincethetargetpressuredistributionmay not be

realizablefrom a physicalprofile.Note thatwhile the

achievedpressuredistributionisvery closetothe target

pressuredistribution,thedrag of77 countsismuch larger

thenthe zerodragexperiencedby the Korn airfoilatits

designpoint.The thirdtestcase introducesdrag asthe

costfunction.Again thedesignprocessiscarriedout in

the fixedliftmodc. InFigure 14, a NACA 64A410 is

again used as a starting airfoil.The design takes placeat

14



Moo = 0.75 and Ct = 0.68 where a strong shock causes

considerable wave drag in the initial airfoil. To preserve

a reasonable lifting airfoil shape the cost function is con-

structed as a blend of preserving the original pressure

distribution and reducing the drag. The final design has a

reduction in drag from Ca = 0.0144 to Ca = 0.0018.

8 THREE DIMENSIONAL DESIGN USING THE

EULER EQUATIONS

In order to illustrate further the application of control

theory to aerodynamic design problems, sections 8 and

9 treat the case of three-dimensional wing design, again

using the inviscid Euler equations as the mathematical
model for compressible flow. In this case it proves con-

venient to denote the Cartesian coordinates and velocity

components by _:1, z2, z3 and u_, u2, u3, and to use the

convention that summation over i = I to 3 is implied by a

repeated index i. The three-dimensional Euler equations

may be written as

OW Ofi

=o

tO_ _

where

in D, (67)

pul pulul + p6it

pu2 , fi = puiu2 + p6i2

pU3 pUitl3 + P6i3pE pui H

and 6ij is the Kronecker delta function. Also,

E- (u ,

and

oH = pE + p

where 7 is the ratio of the specific heats.
transformation to coordinates _1, _2, _3 where

___ [o ,1
Kq = ! °x--L! d = det (K), Ki_' = t_xj jLO jI '

Introduce contravariant velocity components as

U2 = K -t u2
/ U3 u3

The Euler equations can now be written as

with
r

W=J_

Ow OFi
+_-_-/=0 inD,

/
put pUiul + °o_p

pu2 ,, Fi = J pUiu2 + _c_p

ptt3 pUiu3 + °o_p

pE pUi H

(68)

(69)

(70)

Consider a

(71)

• (72)

Assume now that the new computational coordinate sys-

tem conforms to the wing in such a way that the wing

surface Bw is represented by _2 = 0. Then the flow is

determined as the steady state solution of equation (71)

subject to the flow tangency condition

U2=0 onBw. (73)

At the far field boundary BF, conditions are specified for

incoming waves, as in the two-dimensional case, while

outgoing waves are determined by the solution.

Suppose now that it is desired to control the surface

pressure by varying the wing shape. It is convenient

to retain a fixed computational domain. Variations in

the shape then result in corresponding variations in the

mapping derivatives defined by H. Introduce the cost
function

I = -_ (t9 -- pd) 2 d_ld_3,
w

where Pd is the desired pressure. The design problem is

now treated as a control problem where the control func-

tion is the wing shape, which is to be chosen to minimize

I subject to the constraints defined by the flow equations
(71-72). A variation in the shape will cause a variation

6p in the pressure and consequently the a variation in the
cost function

i5I = /fB (,p--pa)6p d_ld_3. (74)
W

Since p depends on w through the equation of state
(69-70), the variation 6p can be determined from the
variation 6w. Define the Jacobian matrices

OYi
Ai = -_w' Ci = JK_tA.i. (75)

Then the equation for 6w in the steady state becomes

where

(9
(6Fi) = O, (76)

= C,6 o+ k ] fj

Now, multiplying by a vector co-state variable ¢ and

integrating over the domain

and if ¢ is differentiable this may be integrated by parts

to give

where ni are components of a unit vector normal to the

boundary. Thus the variation in the cost function may
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nowbewritten

61 =//B (p - Pd) 6p d(ld(3
w

)_ ( ow" d_jJ D, --ffi-_F'

+ fB ('n_T_F') d_a. (77)

On the wing surface Bw, n] = n3 = 0 and it follows

from equation (73) that

6F2=J. ' I
0 0

Oz, 6p

Ozz6p

0 0

(78)

Suppose now that _b is the steady state solution of the

adjoint equation

Ci Z;-_=0 inD. (79)&

At the outer boundary incoming characteristics for _bcor-

respond to outgoing characteristics for 6w. Consequently,

as in the two-dimensional case, one can choose boundary

conditions for _b such that

ni42T Ci6w -----O.

Then if the coordinate transformation is such that 6 (J K- 1)
is negligible in the far field, the only remaining boundary
term is

-- flaw I/2T6F2 d_ld_3"

Thus by letting _bsatisfy the boundary condition,

/ 0_2 --. . O&
J tffJ2"_zl "4"_b,_ -I- tP4-_z_) = (p -- Pd) on Bw, ($0)

we find finally that

,I = fv O_bT'O''/ 3,oz,0`.2 ) ,,d,D

f_ :--.:: 0&+. 0&l- _"-'_-z.=--7+ _3_ w,_jypa_,ae3.
gg

(81)

A convenient way to treat a wing is to introduce sheared

parabolic coordinates as shown in figure 2 through the
transformation

z = xo(O+ 2a(O{i_ 2- (_/+S(_,_))2}

y = _ (O + a CO _ (7 + ,S (L O)

Z -" _.

2a: z, v-Plane.

2b: _, 7-Plane.

Figure 2: Sheared Parabolic Mapping.

L

Here z = z_, y = z2, z = za are the Cartesian coordi-

nates, and _ and 7 + S correspond to parabolic coordinates

generated by the mapping

x + iy = xo + iyo + ½a(0 {_ + i ('7+ S)} 2

at a fixed span station _. Zo (_) and yo (0 are the coordi-

nates of a singular line which is swept to lie just inside the

leading edge of a swept wing, while a (¢) is a scale factor

to allow for spanwise chord variations. The surface _/= 0

is a shallow bump corresponding to the wing surface, with

a height S (_, O determined by the equation

+ iS = ¢2 (maw -I- iYaw ),

where maw (z) and Yaw (z) are coordinates of points ly-
ing on the wing surface. We now treat S (_, O as the
control.

In this case the transformation matrix _ becomes

K
,,(¢-(v+s)s{) -.(n+s) a-.(.+s)s¢ ]= . (, + s + _s_) ._ 8 + ._s_

o 0 1

= 11_ ltn B + _t_£¢ ,
o o 1

where

,4 = aCz- z° + xo¢,

Now,

B : a¢ _ - Yo + Yo<.
a

and

J = zeV. - z.Ve = _2 + (7 + 8)_

V. -xv znB - y.,4 ]
J K-* = -Y6 z_ y_A - z_B - JS¢ .

0 0 3

Then under a modification 6S

6=_ = -. (6ss: + (7+ s)6s_)
6z v = -a&9

6Vv = O.
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Thus

6J = 2a 2(rl+ S) 6S

and

[°
where

-aB6S 1
D

6J

D = 5y¢A - $x(B - a( Jss - 5JS( - JSS_.

Inserting these formulas in equation (81) we find thatthe
volume integral in 61 is

ffo:,o.

fffo: + v:3} drd(I-6yd, +-

where S and 8S are independent of 0. Therefore, inte-
grating over _7, the variation in the cost function can be
reduced to a surface integral of the form

_I =// (P(_,¢)6s - O(_,¢)_& - R(_,¢)_&) d(d¢
w

Here

P = a (,_2+ s_¢3 + c,_,) p

foe r-- "_ {_fl + (r -t- S) f2 + (_A -F (r + S) B) h} dr

-- --/ 0¢7" (fl +S_f2 + c f3) do

[ oft "d
--if(-., rJ

Q

+

R =

+

where

a (_¢,2 + (r + s)¢,3)p

0¢ T {_ft + (r + $)h + (_A + (r + ,S)B)f3} dr

J ,hp

Of3 J_b4dr,Or

J
C = 2aQ1 +S)S_ - A- BS_ + --.

a

Also the shape change will be confined to a boundary

region of the ( - ( plane, so we can integrate by paris to
obtain

5I = P +-_'+-_F dis d_ d(.
w

Thus to reduce I we can choose

6S = -A P + --ff-_+ ,

where A is sufficiently small and non-negative.
In order to impose a thickness constraint we can define

a baseline surface So (_, O below which S (_, O is not
allowed to fall. Now if we take A = A ((, O as a non-

negative function such that

s ((, <) + dis((,() > ,so((,0.

Then the constraint is satisfied, while

6I=- A P +-_-+ df, d( < O.
w

9 IMPLEMENTATION OF THE THREE DIMEN-
SIONAL METHOD FOR WING DESIGN

Since three dimensional calculations are much more ex-

pensive than two dimensional calculations, it is extremely

important for the practical implementation of the method

to use fast solution algorithms for the flow and the adjoint

equations. In this case the author's FLO87 computer pro-

gram has been used as the basis of the design method.

FLO87 solves the three dimensional Euler equations with
a cell-centered finite volume scheme, and uses residual

averaging and multigrid acceleration to obtain very rapid

steady state solutions, usually in 25 to 50 multigrid cycles

[8, 9]. Upwind biasing is used to produce nonoscillatory

solutions, and assure the clean capture of shock waves.
This is introduced through the addition of carefully con-

trolled numerical diffusion terms, with a magnitude of

order Az 3 in smooth parts of the flow. The program

corresponds closely to FLO82, which was used to imple-

ment the design method for the two dimensional Euler

equations. The adjoint equations are treated in the same

way as the flow equations. The fluxes are first estimated

by central differences, and then modified by downwind

biasing through numerical diffusive terms which are sup-

plied by the same subroutines that were used for the flow

equations.
The method has been tested for the optimization of

a swept wing. The planform was fixed while the wing

sections were free to be changed arbitrarily by the design

method. The wing has a unit-semi-span, with 36 degrees

leading edge sweep. It has a compound trapezoidal plan-

form, with straight taper from a root chord of 0.38 to a

chord of 0.26 at the 30 percent span station, and straight
taper from there to a chord of 0.12 at the tip, with an

aspect ratio of 8.7. The initial wing sections were based
on the Kom airfoil, which was designed for shock free
flow at Mach 0.75 with a lift coefficient of 0.63, and has a

thickness to chord ratio of 11.5 perceat [1]. The thickness

to chord ratio was increased by a factor of 1.2 at the root

and decreased by a ratio of 0.8 at the tip, with a linear vaft-

ation across the span. The inboard sections were rotated

upwards to give 3.5 degrees twist across the span.
The two dimensional pressure distribution of the Korn

airfoil at its design point was introduced as a target pres-
sure distribution uniformly across the span. This target is
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presumablynotrealizable,butservestofavortheestab-
lishmentof relativelybenignpressuredistribution.The
totalinvisciddragcoefficient,duetothecombinationof
vortexandshockwavedrag,wasalsoincludedinthecost
function.Calculationswereperformedwiththelift coef-
ficientforcedtoapproachafixedvaluebyadjustingthe
angleofattackeveryfifthiterationoftheflowsolution.It
wasfoundthatthecomputationalcostscanbereducedby
usingonly15multigridcyclesineachflowsolution,andin
eachadjointsolution.Althoughthisisnotenoughforfull
convergence,itprovessufficienttoprovideashapemod-
ificationwhichleadsto animprovement.Figures15,16,
and17showtheresultofacalculationatMachnumberof
0.82,withthelift coefficientforcedtoapproachavalueof
0.5.Thiscalculationwasperformedonameshwith192
intervalsinthe_directionwrappingaroundthewing,32
intervalsinthenormal_direction and 48 intervals in the

spanwise ( direction, giving a total of 294912 cells. The

wing was specified by 33 sections, each with 128 points,

giving a total of 4224 design variables. The plots show

the initial wing geometry and pressure distribution, and
the modified geometry and pressure distribution after 8

design cycles. The total inviscid drag was reduced from

0.0185 to 0.0118. The initial design exhibits a very strong

shock wave in the inboard region. It can be seen that this

is completely eliminated, leaving a very weak shock wave

in the outboard region. The drag reduction is mainly ac-

complished in the first four design cycles but the pressure

distribution continues to be adjusted to become more like
the Kom pressure distribution.

To verify the solution, the final geometry, after 8 de-

sign cycles, was analyzed with another method using the

computer program FLO67. This program uses a cell-

vertex formulation, and has recently been modified to

incorporate a local extremum diminishing algorithm with

a very low level of numerical diffusion [12]. When run

to full convergence it was found that the redesigned wing

has a drag coefficient of 0.0107 at Mach 0.82 at a lift
coefficient of 0.5, with a corresponding lift to drag ratio

of 47. The result is illustrated in Figure 18. A calcu-

lation at Mach 0.500 shows a drag coefficient of 0.0100
for a lift coefficient of 0.5. Since in this case the flow is

entirely subsonic, this provides an estimate of the vortex

drag for this planform and lift distribution. Thus the de-

sign method has reduced the shock wave drag coefficient

to about 0.0007. For a representative transport aircraft the

parasite drag coefficient of the wing due to skin friction is

about 0.0050. Also the fuselage drag coefficient is about

0.0050, the nacelle drag coefficient is about 0.0015, the
empennage drag coefficient is about 0.0015, and excres-

cence drag coefficient is about 0.0006. 'I'nis would give
a total drag coefficient Co = 0.0243 for a lift coefficient

of 0.5, corresponding to a lift to drag ratio L/D = 20.5.

This would be a substantial improvement over the values
obtained by currently flying transport aircraft.

As a further test the redesign was also performed at

a higher Mach number of 0.85. The initial geometry

and pressure distributions, and the result of the redesign

after 10 design cycles are displayed in Figures 19, 20 and

21. In this case the total inviscid drag was reduced from
0.0261 to 0.0132. Again this result has been checked with

FLO67, and when the flow calculation is fully converged,

it is found that the total inviscid drag coefficient is 0.0118

at a lift coefficient of 0.5, indicating a shock wave drag

coefficient of 0.0018. Allowing for the other sources of

drag for the complete aircraft, it is likely that the best

operating point for maximum lift to drag ratio would be

at a somewhat higher lift coefficient.

10 CONCLUSION

In the period since this approach to optimal shape design

was first proposed by the author [10], the method has been

verified by numerical implementation for both potential
flow and flows modeled by the Euler equations. It has

been demonstrated that it can be successfully used with a

finite volume formulation to perform calculations with ar-

bitrary numerically generated grids [16]. The first results

which have been obtained for swept wings with the three

dimensional Euler equations suggest that the method has

now matured to the point where it can be a very useful

tool for the design of new airplanes. Even in the case of

three dimensional flows, the computational requirements

are so moderate that the calculations can be performed
with workstations such as the IBM RISC 6000 series. A

design cycle on a 192x32x48 mesh takes about 1½ hours

on an IBM model 530 workstation, allowing overnight
completion of a design calculation for a swept wing.
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3a: Cp after Zero Design Cycles.
Design Mach 0.72, Cz = 0.5982, Cd -- 0.0191.
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3b: Cp after Zero Design Cycles.
Design Mach 0.2, Cz = 0.5998, Ca = -0.0001.
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3c: Cp after Eight Design Cycles.

Design Mach 0.72, Cz = 0.5999, Ca = 0.0001.
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3d: Cp after Eight Design Cycles.

Design Mach 0.2, Cz = 0.5998, Cd = -0.0001.

Figure 3: Optimization of an Airfoil at Two Design Points.
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4a: Initial Condition
Ct = 0.0(X)0,Cd = 0.0001

a

8

l

4b: 7 Design Iterations
C_ = 0.0000, Ca = 0.0000

Figure 4: Subsonic Non-Ufting Design Case, M = 0.2, e = 0°.
P, x Initial Airfoil: NACA 0012.

- - -, + Target Cp: NACA 64012, M = 0.2.
Inverse Design

t
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: +

+

5a: Initial Condition 5b: 7 Design Iterations
Ct = 0.0000, C,i = 0.0063 Cz = 0.0000, Ca = 0.0003

|

Figure 5: Transonic Non-Lifting Design Case, M = 0.8 a = 0°.
P, x Initial Airfoil: NACA 0012.

- - -, + Target Cv: NACA 64021, M = 0.2.
Inverse Design
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6a: Initial Condition 6b: 8 Design Iterations
c_ = o.oooo, Ca = o.oo63 cz = o.oooo,Cd = o.oo15

9

R_

Figure 6: Transonic Non-Ufting Design Case, M = 0.8, ot= 0° .
M, x Initial Airfoil: NACA 0012.

- --, + Target Cp: NACA 64X, M = 0.8.
Inverse Design

7a: Initial Condition
C_ = 0.7315, Cd = 0.0252, o_= 2.664°

S

7b: 20 Design Iterations
Ct = 0.7334, Cd = 0.0086, a = 0.0320

Figure 7: Transonic Ufting Design Case, M = 0.735 Fixed Lift.
--, x Initial Airfoil: NACA 0012.

- - -, + Target Cv: NACA 64A410, .M"= 0.735, Cz = 0.73.
Inverse Design
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i

8a: Initial Condition

Cz = 0.5492, Ca = 0.0047, c_= 2.7090

"I

8b: 30 Design Iterations

CI = 0.5496, Ca = 0.0045, a = -1.508 °

Figure 8: Transonic Lifting Design Case, M = 0.70, Fixed Lift.
--, x Initial Airfoil: NACA 0012.

- - -, + Target Cp: GAW72, M = 0.70.

Inverse Design
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9a: Initial Condition

C_ = 0.7946, Cn = 0.0358, _ = 2.3640

i

-I
,tl

t
!

9b: 27 Design Iterations

C_ = 0.7971, Ca = 0.0108, e = 1.053'

Figure 9: Transonic Lifting Design Case, M = 0.75 Fixed Lift.
_, x Initial Airfoil: NACA 0012.

- - -, + Target Cp: RAE, M = 0.?5.

Inverse Design
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10a: Initial Condition

Ct = 0.5037, Ca = 0.0127, a = 1.856 °

t

a

:y :-\
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10b: 2 Design Iterations
Ct = 0.5042, Ca = 0.0016, a = 1.990*

Figure 10: Transonic Lifting Design Case, M = 0.75, Fixed Lift.
--, × Initial Airfoil: NACA 0012.

Symetric Drag Minimization.

a

/f

_ ;

11 a: Initial Condition

Ct = 0.5964, C_ = 0.0042, a = -0.464 °
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l
1

1 lb: 2 Design Iterations
CI = 0.5966, Ca = 0.0004, a = 0.1750

Figure 11: Transonic Lifting Design Case, M = 0.735 Fixed Lift.
_, x Initial Airfoil: NACA 64A410.

Camber Only Drag Minimization.
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12a: Initial Condition

Ct = 0.7019, Cd = 0.0015, _ = 0.266 °

II

a

// ,
J

12b: 40 Design Iterations

C1 = 0.6612, Ce = 0.0136, tx = -0.03? 0

Figure 12: Ufting Design Case, M = 0.75, Fixed Lift Mode.
_, x Initial Airfoil: Korn.

- - -, + Target Cp: NACA 64012, M = 0.75.
Inverse Design
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13a: Initial Condition

CI = 0.6432, Cd = 0.0155, a = -0.229 °
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13b: 20 Design Iterations

Cz = 0.629?, C,_ = 0.0077, tx = 0.033 °

Figure 13: Lifting Design Case, M = 038 Fixed Uft Mode
Initial Airfoil: Korn.

Target Cv: Korn, M = 0.75.
Inverse Design
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14a: Initial Condition
Cz = 0.6778, Cd = 0.0144, _ = -0.096 o
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14b: 25 Design Iterations
Cz = 0.6855, Cd = 0.0010, er= -0.?22 o

Figure 14: Lifting Design Case, M = 0.75, Fixed Uft Mode.
Initial Airfoil: NACA 64A410.

Drag Reduction
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15a:InitialWing
C_ = 0.5001,C_ = 0.0185,e = _0.9580 15b: 8 Design Iterations

C_ = 0.4929, C_,= O.0118, e = 0.172o

Figure 15: Lifting Design Case, M = 0.82, Fixed Lift Mode.
Drag Reduction
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UPPER SURFACE PRESSURE LOWER SURFACE PRESSURE

Figure 16: Lifting Design Case, M = 0.82, Fixed Lift Mode.
Initial Wing: Modfied Kom.

CL = 0.5001, CD = 0.0185, o_= -0.958 °
Drag Reduction
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UPPER SURFACE PRESSURE LOWER SURFACE PRESSURE

Figure 17: Lifting Design Case, M = 0.82, Fixed Lift Mode.

Design after 8 cycles
CL = 0.4929, CD = 0.0118, a = 0.172 °

Drag Reduction
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18a: span station z = 0.00
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18b: span station z = 0.25
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18d: span station z = 0.75

Figure 18:FLO67 check on redesigned wing.
M = 0.82, CL = 0.4975, CD = 0.0107, o_= 0.200 o
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19a:InitialWing
Cz = 0.5033, Ca = 0.0261, _ = - 1.236'

19b: 10 Design Iterations

Ca = 0.4956, Ca = 0.0132, e = -0.028 °

Figure 19: Lifting Design Case, M = 0.85, Fixed Uft Mode.

Drag Reduction
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UPPER SURFACE PRESSURE LOWER SURFACE PRESSURE

Figure 20: Lifting Design Case, M = 0.8.5, Fixed Lift Mode.
Initial Airfoil: Modified Korn.

Cz, = 0.5033, CD = 0.026], o_= -l.236 °

Drag Reduction
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UPPER SURFACE PRESSURE LOWER SURFACE PRESSURE

Figure 21: Lifting Design Case, M = 0.85, Fixed Lift Mode.
Design after 10 cycles

CL = 0.4956, CD = 0.0132, e = --0.028 °

Drag Reduction
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